
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

The Journal of Adhesion
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453635

EFFECTIVE PROPERTIES OF POROUS AND COMPOSITE MATERIALS
V. M. Starova; A. G. F. Stapleya; V. G. Zhdanovb

a Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, UK b

Department of Applied Mathematics, Moscow University of Food Industry, Moscow, Russia

Online publication date: 10 August 2010

To cite this Article Starov, V. M. , Stapley, A. G. F. and Zhdanov, V. G.(2004) 'EFFECTIVE PROPERTIES OF POROUS
AND COMPOSITE MATERIALS', The Journal of Adhesion, 80: 10, 971 — 1002
To link to this Article: DOI: 10.1080/00218460490509309
URL: http://dx.doi.org/10.1080/00218460490509309

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453635
http://dx.doi.org/10.1080/00218460490509309
http://www.informaworld.com/terms-and-conditions-of-access.pdf


EFFECTIVE PROPERTIES OF POROUS AND
COMPOSITE MATERIALS

V. M. Starov
A. G. F. Stapley
Department of Chemical Engineering, Loughborough University,
Loughborough, Leicestershire, UK

V. G. Zhdanov
Department of Applied Mathematics, Moscow University of Food
Industry, Moscow, Russia

Based on a previously modified version of Bruggerman’s method, a dependence of
the effective diffusion coefficient in porous media on the porosity is deduced and
compared with available experimental data. Based on the same method, a depen-
dency of the effective elastic coefficients of composite materials on the volume frac-
tion of inclusions is deduced in the case of different types of inclusions.
Comparison with available experimental data shows good agreement between
the theory predictions and the experimental data. In the case of the elastic proper-
ties of laminated composite materials, application of the same method yields
results identical to those obtained using the averaging procedure. A theory of effec-
tive viscosity of concentrated suspensions is applied for calculations of dependency
of effective viscosity on applied shear rate using available experimental data.
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1 INTRODUCTION

Bruggerman’s method (referred to also as the differential method,
which is a version of the mean field theory) has been successfully
applied to calculations of the effective dielectric permeability of sus-
pensions and emulsions [1]. The comparison of different theoretical
predictions with available experimental data is given in Dukhin and
Shilov [1]. The comparison shows that Bruggerman’s equation gives
the best agreement with the available experimental data.

However, a clear mathematical base of this method has not been
presented either in the original paper [2] or in the subsequent publica-
tions (see, for example, Christensen [3]). That did not allow further
applications of this very promising method. A modified version of
Bruggerman’s method has been presented in Starov et al. [4]. The
modified method allows (1) further applications of this method to the
calculation of effective properties of a variety of porous=dispersed me-
dia and (2) a generalisation of the theory in the case when particles=
droplets form clusters. The new method has been applied to the calcu-
lation of effective viscosity of suspensions [4] and emulsions [5], per-
meability of porous media [6] and effective elastic properties of
rubber=polymer sheets with cracks [7].

The idea of the modified Bruggerman’s method is illustrated below
using the calculation of the dependency of an effective dielectric per-
meability of emulsions=suspensions on the volume fraction of parti-
cles=droplets, c (Figure 1). This example (see below) shows that the
application of the modified method [4] results in exactly the same
Bruggerman’s equation as in Bruggerman [2]. Below we consider
emulsions, although the same consideration can be applied to suspen-
sions.

Let em; ep be the dielectric permeability of the dispersion phase and
droplets, respectively; eeff ðem; ep; cÞ is the effective dielectric per-
meability of the emulsion. Let us mark randomly a small number,
dc, of droplets (Figure 1d). This rest of the emulsion containing
nonmarked droplets is replaced by an effective medium with the
effective dielectric permeability eeff ðem; ep; c� dcÞ. The volume fraction
of the marked droplets in the new emulsion (Figure 1b) is dh. This vol-
ume fraction is different from dc because droplets do not overlap (see
Appendix A2 for details). The latter means that the dielectric per-
meability of the emulsion B (Figure 1) is eeff ðeeff ðem; e p; c� dcÞ; ep; dhÞ.
The main advantage of the latter expression is that the volume frac-
tion of the marked droplets is small so that the known equation for
the dielectric permeability of suspensions at low volume fraction [8]
can be used for calculations.

972 V. M. Starov et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



FIGURE 1 Schematic explanation of modified Bruggerman’s method [4] (see
text for details).
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Obviously the dielectric permeability should not depend on the way
of its calculation, i.e., the dielectric permeability of emulsions A and B
(Figure 1) should be equal. It yields the following equation for the
determination of the dependency of the effective dielectric per-
meability of the emulsion on the volume fraction of droplets:

eeff ðem; ep; cÞ ¼ eeff ðeeff ðem; ep; c� dcÞ; ep; dhÞ:

The following steps should be made to solve the latter equation:

1. Taylor’s expansion of the righthand side;
2. Utilization of the known solution [8] for the dependency of the

dielectric permeability on the volume fraction of droplets in the
case of small volume fractions.

This procedure results in a differential equation for the determi-
nation of eeff ðem; ep; cÞ. Solution of this equation coincides with
Bruggerman’s equation [2] for the dependency of the dielectric
permeability on the volume fraction of droplets.

The above described modified version of the Bruggerman’s method
is used below for the calculation of the effective properties of porous
and dispersed media.

2 CALCULATION OF THE DEPENDENCY OF THE EFFECTIVE
DIFFUSION COEFFICIENT ON POROSITY

Figure 2 presents a porous medium built up by impermeable spheri-
cal particles with a liquid (or a gas) in between. Molecular diffusion
takes place in the space between particles. It has been mentioned
above that, for application of the modified Bruggerman’s method,
the dependency of the effective diffusion coefficient on the volume
fraction of particles at low volume fraction of particles is required
(high porosity in the case under consideration). That is, as the first
step, the effective coefficient of the molecular diffusion in the porous
medium built up by impermeable spherical particles in the case of
the high porosity should be calculated. It is done below using the
cell model (Figure 3).

The unit cell of radius, R, is presented in Figure 3. It includes an
impermeable spherical particle of radius, a, which is positioned in
the centre of the cell, and the dispersion medium around. The cell is
surrounded by the effective medium with unknown effective diffusion
coefficient, Deff . The radius of the cell, R, is chosen according to the

974 V. M. Starov et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



FIGURE 3 Cell method for calculation of effective diffusion coefficient.
Spherical impermeable particle of radius a is positioned inside a spherical cell
of radius R. The cell is surrounded by a medium with the effective diffusion
coefficient Deff .

FIGURE 2 Porous medium built up by impermeable particles. An admixture
diffuse in liquid or gas=vapor between particles.
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following condition,

c ¼ 4p
3
a3=

4p
3
R3 ¼ a

R

� �3
;

R ¼ a

c1=3
;

where u ¼ 1 � c is the porosity and c is the volume fraction of the par-
ticles. The concentration and the flux of the molecular substance that
diffuses between particles should be continuous on the boundary of the
cell. On the boundary of the particle the flux in the direction perpen-
dicular to the boundary of the particle should vanish (impermeable
particle). The concentration profile both inside the cell and outside
obeys the Laplace equation. The solutions of the corresponding prob-
lem (see Appendix A1) result in the following equation:

Deff ¼ 1 � 3c
cþ 2

� �
Dm; ð1Þ

where Dm is the diffusion coefficient in the interparticle space and Deff

is the effective diffusion coefficient in the porous medium. Equation (1)
coincides with that deduced in Maxwell [9] in a different way.

In the case of very low volume fraction of particles (dc << 1Þ, Equa-
tion (1) yields:

Deff ¼ Dm þ AdiffusionðDmÞdc; ð2Þ

AdiffusionðDmÞ¼ �1:5Dm: ð3Þ

As the next step below a modification of the Bruggerman’s method
introduced in Starov et al. [4] and briefly described here in the
INTRODUCTION is used.

Let us randomly mark a small number of particles in the porous
medium (with volume fraction dc <<1Þ. The porous medium can now
be considered as the mixture of the small number of the marked par-
ticles surrounded by the effective porous medium built up by the non-
marked particles. Thus, the effective diffusion coefficient can be
expressed in two different ways: (1) using the equation

Deff ¼ DðDm; cÞ; ð4Þ

where DðDm; cÞ is the dependency to be determined; and (2) using the
‘‘marked’’ particles with volume fraction dh (which is different from
dc), surrounded by the effective porous medium with ‘‘non-marked’’
particles with volume fraction c� dc. The diffusion coefficient inside
this part of the effective porous medium is DðDm; c� dcÞ. The latter
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two definitions should give the same dependency of the effective dif-
fusion coefficient in the whole porous medium. It yields the following
equation for calculation of DðDm; cÞ:

DðDm; cÞ ¼ DðDðDm; c� dcÞ; dhÞ: ð5Þ
Geometrical considerations (see Appendix A2) give dh ¼ dc=1 � c. Sub-
stitution of the latter expression into Equation (5) and using first two
terms of Taylor’s series in the righthand site (small parameters dc and
dh) results in the following differential equation (see Appendix A2 for
details):

dDeff

dc
¼ AdiffusionðDeff Þ

1 � c
; ð6Þ

with the boundary conditions

Deff jc¼0 ¼ Dm: ð7Þ

Solution of Equations (3), (6), and (7) results in

Deff ¼ Dmð1�cÞ3=2: ð8Þ

The comparison of the latter dependency in Equation (8) (dashed
curve) with the known theoretical relations (continuous lines) and
available experimental data [10] is presented in Figure 4. Comparison
shows that the relation in Equation (8) agrees well with the known
experimental data.

3 ELASTIC PROPERTIES OF COMPOSITE MATERIALS WITH
DIFFERENT TYPES OF INCLUSIONS

Below our modified method is applied to the calculations of effective
elastic properties of composite materials.

The differential equation for dependency of the effective elastic
properties of composite materials on volume fractions of several differ-
ent types of inclusions is deduced below. The volume fraction of inclu-
sions of type k; ck; is defined as

ck ¼ Vk

V
; ð9Þ

where V is the volume of the composite material and Vk is the volume
of inclusions of type k ðk ¼ 1; 2; . . . ;MÞ.
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Let heff be an effective elastic coefficient of the composite material,
hm be the elastic coefficient of the matrix, and hk be the elastic coef-
ficient of inclusions of the type k ðk ¼ 1; 2; . . . ;MÞ:

The elastic coefficients heff, hm, and hk can be tensors, vectors (for
example, both Young’s modulus and Poisson’s ratio), or scalars
depending on the problem under consideration. It is assumed below

FIGURE 4 Dependence of the effective diffusion coefficient, Deff , on the
particle volume fraction, c. Solid lines correspond to the models of the differ-
ent authors; experimental data from Kim et al. [21], Curie [22], and
Hoogschagen [23]. Dashed line according to Equation (8). Solid line accord-
ing to the following: 1, Wakao and Smith [24]; 2, Ryan et al. [25]; 3,
Quintard and Whitaker [26�27]; 4, Weissberg [28]; 5, Rayleigh [20]. Experi-
mental data are reproduced from Whitaker [10]: 6, Kim et al. [21]; 7, Currie
[22]; 8, Currie [22]; 9, Currie [22]; 10, Currie [22]; 11, Hoogschagen [23]; 12,
Hoogschagen [23].
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that the following relation describes the effective elastic coefficients:

heff
j ¼ hj h

m;h1;h2; . . . ;hM; c1; c2; . . . ; cM
� �

; j ¼ 1; 2; . . . ;N: ð10Þ

Below the subscript j is dropped for an abbreviation.
In the case c1 ¼ c2 ¼ � � � ¼ cM ¼ 0 (no inclusions), Equation (10)

results in

hm ¼ h hm;h1;h2; . . . ;hM; 0; 0; . . . ; 0
� �

; ð11Þ

which is used below as the boundary condition. In the case
ci ¼ 0 ði ¼ 1; 2; . . . ; k� l; kþ 1; . . . ;MÞ (only inclusions of the type k),
Equation (10) results in

hsingle;k hm;hk; ck
� �

¼ h hm;h1;h2; . . . ;hM; 0; 0; . . . ; 0; ck; 0; . . . ; 0
� �

; ð12Þ

which is determined below independently.
Dependences Asingle;kðk ¼ 1; 2; . . . ;MÞ are defined as

Asingle;kðhm;hkÞ ¼ @hsingle½hm;hk; dck�
@dck

�����
dck¼0

; ðk ¼ 1; 2; . . . ;MÞ: ð13Þ

Application of our modified method (see Appendix A3 for details)
results in the following system of partial differential equations:

@heff

@ck
¼ Asingle;kðheff ;hkÞ þ

PM
i¼1 A

single;iðheff ;hiÞci

1 �
PM

i¼1 c
i

; k ¼ 1; 2; . . . ;M: ð14Þ

The effective elastic coefficients of the composite material, heff , can be
calculated as solutions of the system of nonlinear partial differential
Equations (14) with the boundary conditions

heff
��
c1¼c2¼���¼cm¼0

¼ hm: ð15Þ

In the case of only one type of inclusion the latter system reduces to
one ordinary differential equation.

4 APPLICATION TO THE CALCULATION OF ELASTIC
PROPERTIES OF THE LAMINATED COMPOSITE MATERIALS

In this section the elastic properties of the laminated composite mate-
rials (Figure 5) are considered using the deduced system of differential
Equations (14). Earlier, the same problem has been solved using the
averaging method [11] where the analytical expressions for the elastic
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properties have been obtained. The main result of this section is as fol-
lows: the analytical solution presented in Khorshun et al. [11] is the
solution of our system of differential equations deduced using the
modified Bruggerman’s method. That is, both methods give identical
results in the case of laminated composite materials.

Let the axes of symmetry be directed perpendicular to the layers of
the laminated composite material. The equations of equilibrium are
considerably simplified in this case. Derivatives of both the stress
tensor and the fluctuation of displacements ui �

P3
j¼1heijixj vanish in

any direction tangential to the layers, where �uu is the displacement
and heiji are averaged deformations ði; j ¼ 1; 2; 3Þ. This gives the possi-
bility to solve the equations of equilibrium and to calculate the stress
tensors, deformations, and effective elastic moduli [11].

Let hm be the elastic moduli of the matrix, h1;h2; . . . ;hM be the elas-
tic moduli of layers of type 1; 2; . . . ;M and c1; c2; . . . ; cM be the volume
fractions of layers of type 1; 2; . . . ;M:

An averaged value of an arbitrary function, g, over big volume, V, is
introduced as hgi ¼ 1

V

R
Vgdv. Let gðxÞ be equal to gm inside the matrix

and g1; g2; . . . ; gM inside corresponding to layers of type 1; 2; . . . ;M. All
values gm; g1; g2; . . . ; gM remain constant inside the matrix=layers. The
averaging procedure results in hgi ¼ gm 1 �

PM
i¼1 c

i
� �

þ
PM

i¼1 g
ici.

Deformations, e, and stresses, r, inside any layer of the type
qðq ¼ 1; 2; . . . ;MÞ and matrix are related according to r ¼ hqe and
r ¼ hme, respectively. Averaged deformations, hei, and stresses, hri,

FIGURE 5 Laminated composite material.
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are related according to the same law [11]: hri ¼ heff hei. The latter
relations allow the presentation of the solution in the following form:
heff ¼ hðhm;h1;h2; . . . ;hM; c1; c2; . . . ; cMÞ [11]. These expressions in the
case of laminated composite materials with orthotropic layers and
common axes of isotropy, one of which is perpendicular to the layers,
have been obtained in Khorshun et al. [11] as follows:

heff
33333 ¼ hh3333i þ hh1133=h1111i2=h1=h1111i � hh1133

2=h1111i
heff

2222 ¼ hh2222i þ hh1122=h1111i2=h1=h1111i � hh1122
2=h1111i

heff
1111 ¼ 1=h1=h1111i

heff
2233 ¼ hh2233i þ hh1133=h1111ihh1122=h1111i=h1=h1111i

� hh1133h1122=h1111i
heff

1133 ¼ hh1133=h1111i=h1=h1111i
heff

2323 ¼ hh2323i
heff

1212 ¼ 1=h1=h1212i
heff

1313 ¼ 1=h1=h1313i:

ð16Þ

The derivatives Asingle;k are defined below as follows:

Asingle;kðhm;hkÞ

¼
@h hm;h1;h2; . . . ;hM;dc1;dc2; . . . ;dcM
� 	

@dck

����
dc1¼dc2¼���¼dcM¼0

;ðk¼ 1;2; . . . ;MÞ:

ð17Þ

Now let the functions Asingle;kðhm;hkÞ be calculated according to
Equations (16) and (17) and substituted into the system of Equations
(14). After tiresome calculations (not presented) it is possible to show
that Equations (16) being substituted into the system of Equations
(14) give their exact solution. This means that the averaging method
[11] and the modified Bruggerman’s method give identical results in
the case of laminated composite materials.

5 CALCULATION OF THE EFFECTIVE ELASTIC MODULI
OF COMPOSITE MATERIAL WITH SPHERICAL INCLUSIONS

The system of the differential Equations (14) is applied below for cal-
culations of the effective elastic moduli of the elastic isotropic com-
posite materials with spherical isotropic particles (inclusions) and
isotropic matrices. Earlier these moduli have been calculated using
the cell method and Bruggerman’s method in the case of inclusions
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of only one type [3]. However, the equations have been presented in
Christensen [3] without any derivation. It does not allow one either
to estimate the correctness of the obtained results or develop further
generalization in more complex cases of inclusions of different types.
Below the modified Bruggerman’s method is applied to calculation of
the elastic properties of the composite materials with several different
types of inclusions using Equations (14).

Hooke’s law for the particles and the matrix reads

rij ¼ kp
X3

n¼1

enn

 !
dij þ 2lpeij; rij ¼ km

X3

n¼1

enn

 !
dij þ 2lmeij;

where kp, lp, km, and lm are elastic coefficients of the particles and the
matrix, respectively. The same law gives the relation between stress,
r, and deformation, e, averaged over the volume:

hriji ¼ keff
X3

n¼1

henni
 !

dij þ 2leff heiji: ð18Þ

The Young’s modulus, E, and the Poisson’s ratio, m, are usually used
instead of the coefficients j and l:

E ¼ 9kl
3kþ l

; m ¼ 3k� 2l
2ð3kþ lÞ : ð19Þ

If the volume fraction of inclusions is small, dc <<1,then co-
efficients keff and leff have been obtained using the cell method in
Christensen [3]:

leff ¼ lm þ Alðlm; km; lp; kpÞdc;
keff ¼ km þ Amðlm; km; lp; kpÞdc;

ð20Þ

where

Alðlm; km; lp; kpÞ ¼
15ð1 � mmÞ lp

lm
� 1

� �
lm

7 � 5mm þ 2ð4 � 5mmÞl
p

lm

;

Akðlm; km; lp; kpÞ ¼

kp

km
� 1

� �
km

kp � km

km þ 4
3l

m
þ 1

; ð21Þ
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where

mm ¼ 3km � 2lm

2ð3km þ lmÞ :

The system of Equations (14) in the case under consideration using
Equations (20) and (21) results in the following system of differential
equations:

dleff

dc
¼

15ð1 � meff Þ lB

leff
� 1

� �
leff

7 � 5meff þ 2ð4 � 5meff Þ l
B

leff

� �
ð1 � cÞ

;

dkeff

dc
¼

kB

keff
� 1

� �
keff

kB � keff

keff þ 4
3l

eff
þ 1

 !
ð1 � cÞ

; ð22Þ

where meff ¼ 3keff � 2leff

2ð3keff þ leff Þ. The system of Equations (22) should be

subjected the following obvious boundary conditions:

leff
��
c¼0

¼ lm; keff
��
c¼0

¼ km: ð23Þ

Solution of the system of differential Equations (22) with the
boundary conditions in Equation (23) allows determination of the
dependency of the effective elastic coefficients of the composite
material on the volume fraction of inclusions. The system of differen-
tial Equations (22) was presented in Christensen [3] without a proper
derivation. The derivation given above allows generalization in the
case of composite materials with inclusions of several different types
(according to Equations (14)).

In Figures 6 and 7 the comparison of the available experimental
measurements from Simeonov and Ahmad [12] with the calculations
according to Equations [19] and [22] (curves 1) and according to the
Mori-Tanaka theory [13] (curves 2) is presented for the dependency
of the Young’s modulus of the composite materials on the volume frac-
tion of inclusions.

The sum of squares deviations is taken for an estimation of the
deviation from the experimental data:

v ¼
XN
i¼1

�
Eeff

i;exp � Eeff
i;calc

�2
; ð24Þ
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where N is the number of data points (N ¼ 5 in Figure 6 and N ¼ 3 in
Figure 7) and Eeff

i;exp ði ¼ 1; . . . ;NÞ are the experimental values of
Young’s modulus [12]. Figures 6 and 7 show that the calculations
according to Equations (19) and (22) result in better agreement with
the experimental data, than do calculations based on the Mori-Tanaka
theory.

In Table 1 comparison of the experimental data on the elastic
properties of the concrete with two types of inclusions from Simeonov
and Ahmad [12] are compared with our predictions calculated accord-
ing to Equations (14) and (19). Comparison shows that the predictions
according to our theory in all cases overestimate the experimental
values. Calculations according to Mori-Tanaka theory in all cases
underestimate the same experimental data.

6 VISCOSITY OF CONCENTRATED SUSPENSIONS:
INFLUENCE OF CLUSTER FORMATION

In Starov et al. [4], cluster formation in concentrated suspensions
has been taken into account, and based on this consideration a new

FIGURE 6 The Young modulus, Eeff , of cement. Experimental data from
Simeonov and Ahmad [12]: 1, according to Equations (22) and (19),
v¼23.948; 2, according to the Mori-Tanaka theory [13], v¼27.724. Matrix:
cement past Em¼12 GPa, vm¼0.22. Particles: sand Ep¼80 GPa, vp¼0.21.
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equation of the dependency of the effective viscosity on the volume
fraction of particles, c, has been deduced:

dg
dc

¼ 2:5g
d A

c
cmax

� �
dc

þ
A c

cmax

1 � c
cmax

d
c

cmax

� �
dc

2
664

3
775; ð25Þ

where A ¼
P1

i¼1 AiciP1
i¼1 ci

; cmax ¼
P1

i¼1 ci;maxciP1
i¼1 ci

; ci and ci;max ði ¼ 1; 2; 3; . . .Þ

are volume fraction of clusters and averaged packing densities of
single particles inside clusters, respectively; c1;max¼1; and

Ai ði ¼ 1; 2; 3; . . .Þ are deviations of the friction coefficient of clusters
with iði ¼ 1; 2; 3; . . .Þ particles from the corresponding value for solid
particles ðA1 ¼ 1Þ:

It is important to notice that A and cmax are functions of both the
volume fraction, c, and the applied shear stress, s. The latter means
that it is not necessary to deduce a separate equation for dependency
of viscosity on the applied shear stress=rate: it is enough to develop a

FIGRUE 7 The Young modulus, Eeff , of cement. Experimental data from
Simeonov and Ahmad [12]: 1, according to Equations (22) and (19),
v¼32.577; 2, according to Mori-Tanaka theory [13], v¼131.782. Matrix:
cement Em¼12 GPa, vm¼0.22. Particles: steel Ep¼207 GPa, vp¼0.3.
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model that gives dependency of both A and cmax on the applied shear
stress=rate.

Let us assume that A is independent of the volume fraction, c. In
this case the latter equation takes the following form:

dg
dc

¼ 2:5gA
d

c
cmax

� �
dc

þ

c
cmax

1 � c
cmax

d
c

cmax

� �
dc

2
664

3
775

or

dg
dc

¼ 2:5gA

1 � c
cmax

d
c

cmax

� �
dc

; ð26Þ

with the boundary condition

gð0Þ ¼ gm: ð27Þ

It is important to emphasise that cmax is not supposed to retain a
constant value, independent of the volume fraction, c.

The solution of Equation (26) with the boundary condition in Equa-
tion (27) is

gðcÞ
g0

¼ 1

1 � c
cmax

� �2:5A
: ð28Þ

Equation (28) almost coincides with the Dougherty-Krieger equation
[14, 15]:

gðcÞ
g0

¼ 1

1 � c
cmax

� �½g�cmax
; ð29Þ

where [g] is an intrinsic viscosity.
It is necessary to emphasise that in spite of a striking similarity

between Equations (28) and (29) there are two very substantial differ-
ences between these equations:

1. The physical meaning of parameters included in Equation (28) is
quite different from those used in Equation (29). According to the
theory developed above, viscosity dependence on concentration is

Effective Properties of Porous and Composite Materials 987

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



related to cluster formation and this physical phenomenon is incor-
porated in Equation (28).

2. Equation (28) describes both dependency on particle volume
fraction and on the applied shear stress=rate. This dependency is
hidden in the dependency of both A and cmax on the applied shear
stress=rate.

If particles do not form clusters, that is, c1 ¼ c; ci ¼ 0; i ¼ 2; 3; 4;. . .,
and hence cmax ¼ A ¼ 1 should be used in Equation (28), which gives in
this particular case

gðcÞ
g0

¼ 1

ð1 � cÞ2:5
: ð30Þ

The latter equation coincides with the earlier obtained expressions
for the dependence of the effective viscosity of suspensions that do not
form clusters [16, 17].

A comprehensive review of experimental data on viscosity of con-
centrated suspensions is presented in Thomas [18]. In Starov and
Zhdanov [6], the comparison of experimental data with predictions
according to Equations (30) and (28) has been presented. The com-
parison showed that the whole array of experimental data can be
described using Equation (28) at difference but reasonable para-
meters cmax and A. It has been shown in Starov and Zhdanov [6]
that prediction according to Equation (30)—no cluster formation,
particles evenly distributed in space—underestimates experimental
data.

Let us make the next simplification and assume that both A and
cmax are independent of the particle volume fraction, c; that is, both
depend only on the applied shear stress, s.

Experimental data on the rheology of a synthetic latex (shear stress
dependence in a wide range of concentration) presented in Maron and
Fok [19] are used below.

Two experimental values of the effective viscosity of suspensions at
particle volume fractions c ¼ 0.299 and c ¼ 0.6017 (the lowest and the
highest available, respectively) at each shear stress, s from Table 2 are
used to calculate two unknown values, A and cmax, for each value of the
shear stress, s. This procedure results in the system of two equations
with two unknown values, cmaxðsÞ and AðsÞ. In this way, at each shear
stress, s, these two values were determined. Determined dependences
AðsÞ and cmaxðsÞ are presented in Figures 8 and 9, respectively. Figure 9
shows that the average packing density inside clusters, cmaxðsÞ,
increases with applied shear stress, that is, clusters become denser.
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FIGURE 8 Dependence of average parameter, �AA, on applied shear stress, s.

FIGURE 9 Dependence of average packing density inside clusters, �ccmax, on
applied shear stress, s.
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In this situation the average friction coefficient, A, should increase,
which is in agreement with Figure 8.

Equation (28) can be rewritten as

gðc; sÞ
g0

¼ 1

1 � c
cmaxðsÞ

� �2:5AðsÞ
: ð31Þ

The above determined cmaxðsÞ and AðsÞ dependences are used for cal-
culation of gðc; sÞ at all shear stress, s, all volume fractions, c. Calcu-
lated dependencies of effective viscosity on the volume fraction
according to Equation (31) are compared with the corresponding
experimental values of effective viscosity at different volume fractions,
c, taken from the set of values {0.397, 0.4398, 0.4876,
0.5390, 0.5603, 0.5866} (Table 2). Comparison is presented in Figure
10, which shows that the assumed independently of cmaxðsÞ and AðsÞ
from the volume fraction of particles is reasonably fulfilled.

FIGURE 10 Dependency of the effective viscosity of suspensions on shear
stress calculated according to Equation (31) at different particle volume frac-
tions. Experimental data from Manon and Fok [19]. �AAðsÞ and �ccmaxðsÞ dependen-
cies from Figures 8 and 9, both assumed independent of the volume fraction of
particles.
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APPENDIX A1: CALCULATION OF THE EFFECTIVE DIFFUSION
COEFFICIENT USING THE CELL METHOD

Let us consider a porous medium built up by the spherical imper-
meable particles (Figure 2) with a liquid or a gas in between. The
effective coefficient of the molecular diffusion in this porous medium
is calculated below using the cell model. The unit cell of radius R is
presented in Figure 3. It includes an impermeable spherical particle
of radius a in the centre and the dispersion medium around. The cell
is surrounded by the effective medium with unknown effective dif-
fusion coefficient, Deff . The radius of the cell, R, is given using the fol-
lowing condition c ¼ 4p

3 a3= 4p
3 R3 ¼ a

R

� 	3
;R ¼ a=c1=3, where u ¼ 1 � c is

the porosity and c is the volume fraction of the particles.
Molecular diffusion of some admixture take place in the space

between particles, which are impermeable for this admixture. Far
from the cell the gradient of concentration of the admixture is constant
(see the condition in Equation (A1.7)). On the boundary of the cell the
concentration and the flux of the admixture are continuous. On the
boundary of the particle the flow in the direction perpendicular to
the boundary of the particle us zero (impermeability condition). The
concentration outside and inside of the cell obeys the Laplace equa-
tion:

DCeff ¼ 0; r > R; ðA1:1Þ
DCm ¼ 0; r > R: ðA1:2Þ

The boundary condition on the boundary of the particle of radius
a is

~nn:5 Cm

����
r¼a

¼ 0: ðA1:3Þ

The boundary conditions on the boundary of the cell of radius R are

Cm

����
r¼R

¼ Ceff

����
r¼R

ðA1:4Þ

and

Dm 5 Cm

����
r¼R

¼ Deff 5 Ceff

����
r¼R

; ðA1:5Þ

where Dm is the diffusion coefficient in the dispersion medium-and
Deff is the effective diffusion coefficient to be determined.
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The solution of Equation (A1.1) can be presented in the following
form:

Ceff ¼ gðrÞ cos h; r > R: ðA1:6Þ

Far from the cell the constant gradient of the admixture concen-
tration is imposed:

Ceff ¼ C1r cos h; ðA1:7Þ

where C1 is the constant describing the concentration field far from
the cell. The cell under consideration is a part of the porous medium
and hence does not disturb the concentration field outside the cell.
The latter remark and comparison of Equation (A1.6) and (A1.7) shows
that gðrÞ ¼ C1.

The solution of Equation (A1.2) can be presented in the same form
as Equation (A1.6):

Cm ¼ f ðrÞ cos h; r < R;

Substitution of the latter expression in Equation (A1.2) gives

Cm ¼ GrþQ

2

� �
cos h: ðA1:8Þ

where G and Q are integration constants. The unknown effective
diffusion coefficient, Deff, can be calculated using the three boundary
conditions in Equations (A1.3)�(A1.5). Indeed, the concentration
profiles outside and inside the cell, Equations (A1.8) and (A1.7),
include two integration constants, G and Q as well as the unknown
effective diffusion coefficient, Deff . That is, we have system of three
equations with three unknowns. This system has the following
solution:

Q ¼ C1a3

2 þ c
; ðA1:9Þ

G ¼ 2C1

2 þ c
; ðA1:10Þ

Deff ¼ 1
3c

cþ 2

� �
Dm: ðA1:11Þ

Equation (A1.11) has been deduced by Maxwell [9] in a different way.
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APPENDIX A2: CALCULATION OF THE DIFFUSION
COEFFICIENT USING THE MODIFIED BRUGGERMAN’S
METHOD

The volume fraction of particles is defined as

c ¼ Vp

V
; ðA2:1Þ

where V is the total volume of the porous medium and Vp is the total
volume of particles.

The unknown dependency of the effective diffusion coefficient on
the fraction of the particle is

Deff ¼ DðDm; cÞ; ðA2:2Þ

which is calculated below.
In the case c ¼ 0, Equation (A2.2) is reduced to

Dm ¼ DðDm; 0Þ: ðA2:3Þ

If the fraction of the particles is small, dc << 1, the Equations (A2.2)
and (A2.3) result in

Deff ¼ Dm þ AdiffusionðDmÞdc; ðA2:4Þ

where Adiffusion is the new function that which is determined earlier
according to Equation (3).

Let us randomly mark some small number of particles, and remain-
ing particles are left unmarked. The volume fraction of marked parti-
cles, dh, is

dh ¼ dV
V

; ðA2:5Þ

where dV is the volume of marked particles. The volume fraction of the
nonmarked particles, c� dc is

c� dc ¼ Vp � dV
V � dV

: ðA2:6Þ

Equations (A2.1), (A2.5), and (A2.6) result in the following relation:

dc ¼ ð1 � cÞ dh
1 � dh

; ðA2:7Þ

or, keeping only first-order small terms,

dh ¼ dc
1 � c

: ðA2:8Þ
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The porous structure can now be considered as a mixture of marked
particles surrounded by the rest of the porous structure built up by
unmarked particles (Figure 1b). Thus, the effective diffusion coef-
ficient can be expressed in two different ways: (1) using the definition
in Equation (A2.2) and (2) using ‘‘marked particles’’ with volume frac-
tion dh, surrounded by an effective medium of ‘‘unmarked particles’’
with volume fraction c�dc: The unknown diffusion coefficient in the
effective medium built up by ‘‘unmarked particles’’ according to the
definition in Equation (A2.2), is DðDm; c� dcÞ: As the effective dif-
fusion coefficient does not depend on how it is calculated, it yields
the following equation:

DðDm; cÞ ¼ DðDðDm; c� dcÞ; dhÞ: ðA2:9Þ

Using Taylor’s series and saving terms of the first-order pro-
portional to dc and dh, the latter equation gives

DðDðDm; c� dcÞ; dhÞ ¼DðDðDm; cÞ; 0Þ þ @DðDðDm; c� dcÞ; dhÞ
@dc

����
dc¼0
dh¼0

dc

þ @DðDðDm; c� dcÞ; dhÞ
@dh

����
dc¼0
dh¼0

dh: ðA2:10Þ

Equation (A2.10) can be simplified using the condition in Equation
(A2.3):

DðDðDm; cÞ; 0Þ ¼ DðDm; cÞ: ðA2:11Þ

The combinations of Equations (A2.3) and (A2.2) results in

@DðDðDm; c� dcÞ; dhÞ
@dh

����
dc¼0
dh¼0

¼ @DðDðDm; cÞ; dhÞ
@dh

����
dh¼0

¼ @DðDeff ; cÞ
@dh

����
dh¼0

¼ AdiffusionðDeff Þ: ðA2:12Þ

The condition in Equation (A2.3) gives

@DðDðDm; c� dcÞ; dhÞ
@dc

����
dc¼0
dh¼0

¼ @DðDðDm; c� dcÞ; 0Þ
@dc

����
dc¼0

¼ @DðDm; c� dcÞ
@dc

����
dc¼0

¼ � @DðDm; cÞ
@c

¼ �dDeff

dc

ðA2:13Þ
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Substitution of Equations (A2.11)�(A2.13) into Equation (A2.10) gives

0 ¼ AdiffusionðDeff Þdh� dDeff

dc
dc: ðA2:14Þ

Substitution of Equations (A2.4) and (A2.8) into Equation (A2.14)
results in the following differential equation:

dDeff

dc
¼ AdiffusionðDeff Þ

1 � c
; ðA2:15Þ

with the boundary condition in Equation (A2.3):

Deff jc¼0 ¼ Dm: ðA2:16Þ

APPENDIX A3: THE SYSTEM OF PARTIAL DIFFERENTIAL
EQUATIONS FOR THE CALCULATION OF THE ELASTIC
PROPERTIES OF THE COMPOSITE MATERIALS CONTAINING
DIFFERENT TYPES OF INCLUSIONS

The differential equation for dependency of the effective elastic proper-
ties of the composite materials on volume fractions of several different
types of inclusions is deduced below using the above-described
modified Bruggerman’s method.

The volume fraction of inclusions of type k, ck, is defined
as follows:

ck ¼ Vk

V
; ðA3:1Þ

here V is the volume of the composite material and Vk is the volume of
inclusions of type k ðk ¼ 1; 2; . . . ;MÞ.

Let heff be the effective elastic coefficient of the composite material
hm the elastic coefficient of the matrix and hk the elastic coefficient of
the inclusions of type kðk ¼ 1; 2; . . . ;MÞ. The coefficients heff, hm, and
hk can be tensors, vector, or scalars (for example, both Young’s modu-
lus and Poisson’s ratio) depending on the problem under consider-
ation. It is assumed below that the following relation describes the
effective elastic coefficients:

heff
j ¼ hj½hm;h1;h2; . . . ;hM; c1; c2; . . . ; cM�; j ¼ 1; 2; . . . ;N: ðA3:2Þ

Below the index j is dropped as an abbreviation.
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In the case c1 ¼ c2 ¼ � � � ¼ cM ¼ 0 (no inclusion), Equation (A3.2)
results in

hm ¼ h½hm;h1;h2; . . . ;hM; 0; 0; . . . ; 0�: ðA3:3Þ
which is used below as the boundary condition. In the case
ci ¼ 0 ði ¼ 1; 2; . . . ;k � 1;k þ 1; . . . ;MÞ (only inclusions of type k),
Equation (A3.2) results in

hsingle;k½hm;hk; ck� ¼ h½hm;h1;h2; . . . ;hM; 0; 0; . . . ; 0; ck; 0; . . . ;0�: ðA3:4Þ
Dependence Asingle; kðk ¼ 1; 2; . . . ;MÞ are defined as

Asingle; kðhm;hkÞ ¼ @hsingle½hm;hk; dck�
@dck

����
dck¼0

; ðk ¼ 1; 2; . . . ;MÞ: ðA3:5Þ

Let us randomly mark a small number of inclusions of each type.
The small volume fractions of the marked inclusions,
dhkðk ¼ 1; 2; . . . ;MÞ, are equal to

dhk ¼ dVk

V
; ðA3:6Þ

where dVk is the volume of marked inclusions. The volume fraction of
the unmarked inclusions are

ck � dck ¼ Vk � dVk

V �
PM
i¼1

dVi

: ðA3:7Þ

Equations (A3.1), (A3.6) and (A3.7) result in

dck ¼
dhk � ck

PM
i¼1

dhi
� �

1 �
PM
i¼1

dhi
; ðA3:8Þ

or, neglecting the small volume fractions of higher order,

dck ¼ dhk � ck
XM
i¼1

dhi: ðA3:9Þ

The composite material can be treated now as a mixture of marked
inclusions surrounded by an effective medium with unmarked inclu-
sions. Thus, the effective elastic coefficients of the composite material,
heff, can be expressed in two different ways: (1) according to the
definition in Equation (A3.2), and (2) using ‘‘marked’’ inclusions (with
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the volume fractions dhk; k ¼ 1; 2; . . . ;M) surrounded by the effective
medium with ‘‘unmarked’’ inclusions (with the volume fractions given
by Equation (A3.9)). The latter effective medium has the elastic pro-
perty h½hm;h1;h2; . . . ;hM; c1 � dc1; c2; . . . ; cM � dcM� according to the
definition in Equation (A3.2).

The coefficients calculated in these two ways should be equal. This
results in the following system of equations:

h½hm;h1;h2; . . . ;hM; c1; c2; . . . ; cM�
¼ h½h½hm;h1;h2; . . . ;hM; c1 � dc1; c2 � dc2; . . . ; cM � dcM�;

h1;h2; . . . ;hM; dh1; dh2; . . . ; dhM�;
ðA3:10Þ

The system of Equations (A3.10) is transformed below using the
Taylor series with small parameters dc and dh:

h½h½hm;h1;h2; . . . ;hM; c1 � dc1; c2 � dc2; . . . ; cM � dcM�;
h1;h2; . . . ;hM; dh1; dh2; . . . ; dhM�
¼ h½h½hm;h1;h2; . . . ;hM; c1; c2; . . . ; cM�;h1;h2; . . . ;hM; 0; 0; . . . ; 0�

þ
XM
k¼1

@h½h½hm;h1;h2; . . . ;hM; c1 � dc1; c2 � dc2; . . . ; cM � dcM�;
@dhk

� h1;h2; . . . ;hM; dh1; dh2; . . . ; dhM�
@dhk

����
dh¼0
dc¼0

dhk

þ
XM
k¼1

@h½h½hm;h1;h2; . . . ;hM; c1 � dc1; c2 � dc2; . . . ; cM � dcM�;
@dck

� h1;h2; . . . ;hM; dh1; dh2; . . . ; dhM�
@dck

����
dh¼0
dc¼0

dck: ðA3:11Þ

In the latter equation, and below, the following abbreviation, dh¼0
dc¼0,

stands for

dh1 ¼ � � � ¼ dhM ¼ 0

dc1 ¼ � � � ¼ dcM ¼ 0
:

Equation (A3.11) can be simplified using the relations in Equations
(A3.3) and (A3.2):

h½h½hm;h1;h2; . . . ;hM; c1; c2; . . . ; cM�;h1;h2; . . . ;hM; 0; 0; . . . ; 0�
¼ h½hm;h1;h2; . . . ;hM; c1; c2; . . . ; cM� ¼ heff : ðA3:12Þ
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The combination of Equations (A3.3)�(A3.5) results in

@h½h½hm;h1;h2; . . . ;hM; c1 � dc1; c2 � dc2; . . . ; cM � dcM �;
@dck

� h1;h2; . . . ;hM; dh1; dh2; . . . ; dhM�
@dhk

����
dh¼0
dc¼0

¼ @h½h½hm;h1;h2; . . . ;hM; c1; c2; . . . ; cM�;h1;h2; . . . ;hM ; dh1; dh2; . . . ; dhM�
@dhk

����
dh¼0

¼ @hsingle½h½hm;h1;h2; . . . ;hM; c1; c2; . . . ; cM�;h1;h2; . . . ;hM; dh1; dh2; . . . ; dhM �
@dhk

����
dhk¼0

¼ Asingle;kðheff ;hkÞ:
ðA3:13Þ

Equations (A3.4) and (A3.2) give

@h½h½hm;h1;h2; . . . ;hM; c1 � dc1; c2 � dc2; . . . ; cM � dcM�;
@dck

� h1;h2; . . . ;hM; dh1; dh2; . . . ; dhM�
@dck

����
dh¼0
dc¼0

¼ @h½h½hm;h1;h2; . . . ;hM; c1 � dc1; c2 � dc2; . . . ; cM � dcM�;
@dck

� h1;h2; . . . ;hM;0; 0; . . . ; 0�
@dck

����
dr¼0

¼ @h½hm;h1;h2; . . . ;hM; c1 � dc1; c2 � dc2; . . . ; cM � dcM�
@dck

����
dr¼0

¼ @h½hm;h1;h2; . . . ;hM; c1; c2; . . . ; cM�
@dck

¼ @heff

@ck
:

ðA3:14Þ

Now Equation (A3.11) can be simplified using Equations (A3.12)�
(A3.14) as follows:

0 ¼
XM
k¼1

Asingle;kðheff ;hkÞdhk �
XM
k¼1

@heff

@ck
dck ðA3:15Þ

The ‘‘marked’’ inclusions are selected randomly, therefore the small
volume fractions, dhiði ¼ 1; 2; . . . ;MÞ, are independent. Therefore,
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Equation (A3.9) after substitution in Equation (A3.15) and collecting
terms proportional to dhk results in

0 ¼ Asingle;kðheff ;hkÞ � @heff

@ck
þ
XM
i¼1

@heff

@ci
ci; k ¼ 1; 2; . . . ;M: ðA3:16Þ

Multiplying Equations (A3.16) by ck and summation over k yields

XM
i¼1

@heff

@ci
ci ¼

PM
i¼1 A

single;iðheff ;hiÞci

1 �
PM

i¼1 c
i

: ðA3:17Þ

Substitution of Equation (A3.17) into Equation (A3.16) results in the
following system of differential equations:

@heff

@ck
¼ Asingle;kðheff ;hkÞ þ

PM
i¼1 A

single;iðheff ;hiÞci

1 �
PM

i¼1 c
i

; k ¼ 1; 2; . . . ;M:

ðA3:18Þ

The effective elastic coefficients of the composite material, heff, can be
calculated as solutions of the system of nonlinear partial differential
Equations (A3.18) with the boundary conditions deduced from the con-
dition in Equation (A3.3)

heff
���
c1¼c2¼���¼cM¼0

¼ hm: ðA3:19Þ

NOMENCLATURE

a radius of particles (droplets)
C concentration
D diffusion coefficient
E Young’s modulus
h elastic moduli of composite material
Q, G integrating constants
R radius of cell
u displacement
V volume

Greek Symbols

e dielectric permeability or deformation
g viscosity
c volume fraction of particles=droplets
/ porosity
m elastic shear modulus of composite material
m determined in Equation (19)
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v squares deviation
h fraction

Superscripts

eff effective
diffusion diffusion
single characteristics of a material with only one type of inclusion
m matrix (medium)
p particles (droplets)

Subscripts

max packing density inside clusters
exp experimental
calc calculated
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