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Based on a previously modified version of Bruggerman’s method, a dependence of
the effective diffusion coefficient in porous media on the porosity is deduced and
compared with available experimental data. Based on the same method, a depen-
dency of the effective elastic coefficients of composite materials on the volume frac-
tion of inclusions is deduced in the case of different types of inclusions.
Comparison with available experimental data shows good agreement between
the theory predictions and the experimental data. In the case of the elastic proper-
ties of laminated composite materials, application of the same method yields
results identical to those obtained using the averaging procedure. A theory of effec-
tive viscosity of concentrated suspensions is applied for calculations of dependency
of effective viscosity on applied shear rate using available experimental data.
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1 INTRODUCTION

Bruggerman’s method (referred to also as the differential method,
which is a version of the mean field theory) has been successfully
applied to calculations of the effective dielectric permeability of sus-
pensions and emulsions [1]. The comparison of different theoretical
predictions with available experimental data is given in Dukhin and
Shilov [1]. The comparison shows that Bruggerman’s equation gives
the best agreement with the available experimental data.

However, a clear mathematical base of this method has not been
presented either in the original paper [2] or in the subsequent publica-
tions (see, for example, Christensen [3]). That did not allow further
applications of this very promising method. A modified version of
Bruggerman’s method has been presented in Starov et al. [4]. The
modified method allows (1) further applications of this method to the
calculation of effective properties of a variety of porous/dispersed me-
dia and (2) a generalisation of the theory in the case when particles/
droplets form clusters. The new method has been applied to the calcu-
lation of effective viscosity of suspensions [4] and emulsions [5], per-
meability of porous media [6] and effective elastic properties of
rubber/polymer sheets with cracks [7].

The idea of the modified Bruggerman’s method is illustrated below
using the calculation of the dependency of an effective dielectric per-
meability of emulsions/suspensions on the volume fraction of parti-
cles/droplets, y (Figure 1). This example (see below) shows that the
application of the modified method [4] results in exactly the same
Bruggerman’s equation as in Bruggerman [2]. Below we consider
emulsions, although the same consideration can be applied to suspen-
sions.

Let ¢™, ¢? be the dielectric permeability of the dispersion phase and
droplets, respectively; ¢ (¢ ¢P,7) is the effective dielectric per-
meability of the emulsion. Let us mark randomly a small number,
oy, of droplets (Figure 1d). This rest of the emulsion containing
nonmarked droplets is replaced by an effective medium with the
effective dielectric permeability & (¢, ¢,y — 5y). The volume fraction
of the marked droplets in the new emulsion (Figure 1b) is 60. This vol-
ume fraction is different from Jy because droplets do not overlap (see
Appendix A2 for details). The latter means that the dielectric per-
meability of the emulsion B (Figure 1) is & (e (e7,eP,y — &y), P, 60).
The main advantage of the latter expression is that the volume frac-
tion of the marked droplets is small so that the known equation for
the dielectric permeability of suspensions at low volume fraction [8]
can be used for calculations.
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FIGURE 1 Schematic explanation of modified Bruggerman’s method [4] (see
text for details).
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Obviously the dielectric permeability should not depend on the way
of its calculation, i.e., the dielectric permeability of emulsions A and B
(Figure 1) should be equal. It yields the following equation for the
determination of the dependency of the effective dielectric per-
meability of the emulsion on the volume fraction of droplets:

eeff(sm,sp,y) = 82#(8‘3#(8’”,81’, y—07), &P, 00).

The following steps should be made to solve the latter equation:

—

. Taylor’s expansion of the righthand side;

2. Utilization of the known solution [8] for the dependency of the
dielectric permeability on the volume fraction of droplets in the
case of small volume fractions.

This procedure results in a differential equation for the determi-
nation of ¢ (¢7,¢P y). Solution of this equation coincides with
Bruggerman’s equation [2] for the dependency of the dielectric
permeability on the volume fraction of droplets.

The above described modified version of the Bruggerman’s method
is used below for the calculation of the effective properties of porous
and dispersed media.

2 CALCULATION OF THE DEPENDENCY OF THE EFFECTIVE
DIFFUSION COEFFICIENT ON POROSITY

Figure 2 presents a porous medium built up by impermeable spheri-
cal particles with a liquid (or a gas) in between. Molecular diffusion
takes place in the space between particles. It has been mentioned
above that, for application of the modified Bruggerman’s method,
the dependency of the effective diffusion coefficient on the volume
fraction of particles at low volume fraction of particles is required
(high porosity in the case under consideration). That is, as the first
step, the effective coefficient of the molecular diffusion in the porous
medium built up by impermeable spherical particles in the case of
the high porosity should be calculated. It is done below using the
cell model (Figure 3).

The unit cell of radius, R, is presented in Figure 3. It includes an
impermeable spherical particle of radius, a, which is positioned in
the centre of the cell, and the dispersion medium around. The cell is
surrounded by the effective medium with unknown effective diffusion
coefficient, D*. The radius of the cell, R, is chosen according to the
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Liquid or
gas

FIGURE 2 Porous medium built up by impermeable particles. An admixture
diffuse in liquid or gas/vapor between particles.

Particle

Effective medium,

Deff

Liquid: D™.

FIGURE 3 Cell method for calculation of effective diffusion coefficient.
Spherical impermeable particle of radius a is positioned inside a spherical cell
of radius R. The cell is surrounded by a medium with the effective diffusion
coefficient D7 .
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following condition,

where ¢ = 1 — y is the porosity and y is the volume fraction of the par-
ticles. The concentration and the flux of the molecular substance that
diffuses between particles should be continuous on the boundary of the
cell. On the boundary of the particle the flux in the direction perpen-
dicular to the boundary of the particle should vanish (impermeable
particle). The concentration profile both inside the cell and outside
obeys the Laplace equation. The solutions of the corresponding prob-
lem (see Appendix Al) result in the following equation:

3y
Dif =1 -2 \pm 1
( y+z) , (1)

where D™ is the diffusion coefficient in the interparticle space and D"
is the effective diffusion coefficient in the porous medium. Equation (1)
coincides with that deduced in Maxwell [9] in a different way.

In the case of very low volume fraction of particles (éy <« 1), Equa-
tion (1) yields:

Deff: D" +Adiffusion (D’")é% (2)
Adiffusion (Dm) — —_1.5D™. (3)

As the next step below a modification of the Bruggerman’s method
introduced in Starov et al. [4] and briefly described here in the
INTRODUCTION is used.

Let us randomly mark a small number of particles in the porous
medium (with volume fraction ¢y << 1). The porous medium can now
be considered as the mixture of the small number of the marked par-
ticles surrounded by the effective porous medium built up by the non-
marked particles. Thus, the effective diffusion coefficient can be
expressed in two different ways: (1) using the equation

DT =D(D™,y), (4)

where D(D™, y) is the dependency to be determined; and (2) using the
“marked” particles with volume fraction 00 (which is different from
0y), surrounded by the effective porous medium with “non-marked”
particles with volume fraction y — 0y. The diffusion coefficient inside
this part of the effective porous medium is D(D™,y — dy). The latter
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two definitions should give the same dependency of the effective dif-
fusion coefficient in the whole porous medium. It yields the following
equation for calculation of D(D™,y):

D(D™,y) =D(D(D™,y = d7),60). (5)

Geometrical considerations (see Appendix A2) give 60 = dy/1 — y. Sub-
stitution of the latter expression into Equation (5) and using first two
terms of Taylor’s series in the righthand site (small parameters dy and
00) results in the following differential equation (see Appendix A2 for
details):

dDeff B Adiffusion (Deff)

dy 1-y ’ (6)
with the boundary conditions
D| _, =D™. (7)
Solution of Equations (3), (6), and (7) results in
D = D™ (1—)%2. (8)

The comparison of the latter dependency in Equation (8) (dashed
curve) with the known theoretical relations (continuous lines) and
available experimental data [10] is presented in Figure 4. Comparison
shows that the relation in Equation (8) agrees well with the known
experimental data.

3 ELASTIC PROPERTIES OF COMPOSITE MATERIALS WITH
DIFFERENT TYPES OF INCLUSIONS

Below our modified method is applied to the calculations of effective
elastic properties of composite materials.

The differential equation for dependency of the effective elastic
properties of composite materials on volume fractions of several differ-
ent types of inclusions is deduced below. The volume fraction of inclu-
sions of type &, 7", is defined as

Vk
N
r= vV’ (9)

where V is the volume of the composite material and V* is the volume
of inclusions of type k£ (k. =1,2,...,M).
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FIGURE 4 Dependence of the effective diffusion coefficient, D/, on the
particle volume fraction, y. Solid lines correspond to the models of the differ-
ent authors; experimental data from Kim et al. [21], Curie [22], and
Hoogschagen [23]. Dashed line according to Equation (8). Solid line accord-
ing to the following: 1, Wakao and Smith [24]; 2, Ryan et al. [25]; 3,
Quintard and Whitaker [26—27]; 4, Weissberg [28]; 5, Rayleigh [20]. Experi-
mental data are reproduced from Whitaker [10]: 6, Kim et al. [21]; 7, Currie
[22]; 8, Currie [22]; 9, Currie [22]; 10, Currie [22]; 11, Hoogschagen [23]; 12,
Hoogschagen [23].

Let ¢ be an effective elastic coefficient of the composite material,
A™ be the elastic coefficient of the matrix, and A* be the elastic coef-
ficient of inclusions of the type & (k =1,2,...,M).

The elastic coefficients A7, k™, and A”* can be tensors, vectors (for
example, both Young’s modulus and Poisson’s ratio), or scalars
depending on the problem under consideration. It is assumed below
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that the following relation describes the effective elastic coefficients:
R = hi[Rm R RE L RM R M) j=1,2,... . N.  (10)

Below the subscript j is dropped for an abbreviation.
In the case y! =92 =... =9 =0 (no inclusions), Equation (10)
results in

hm:h[hm,hl’hQ,.__’hM’(),()V“’O], (11)

which is used below as the boundary condition. In the case
P=03G0=1,2,....,k—L,k+1,...,M) (only inclusions of the type k&),
Equation (10) results in

psinglek [pm pk k) = p[p™ Y A2, RM0,0,...,0,9%,0,...,0], (12)

which is determined below independently.
Dependences AS"8le#(k = 1,2,... M) are defined as

ahsingle [hm’ hk, 5”/}‘]
Ok

Asingle.k(hm,hk) — ,(k=1,2,....M). (13)

k=0

Application of our modified method (see Appendix A3 for details)
results in the following system of partial differential equations:

8h9ff :Asingle_k (heff,hk) + Z

Oyk

?il Asingle,i (heff7 hi)
M .
1-337

The effective elastic coefficients of the composite material, 2%, can be

calculated as solutions of the system of nonlinear partial differential
Equations (14) with the boundary conditions

T k=1,2,....M. (14)

heff

jimpmmmmg = B (15)

In the case of only one type of inclusion the latter system reduces to
one ordinary differential equation.

4 APPLICATION TO THE CALCULATION OF ELASTIC
PROPERTIES OF THE LAMINATED COMPOSITE MATERIALS

In this section the elastic properties of the laminated composite mate-
rials (Figure 5) are considered using the deduced system of differential
Equations (14). Earlier, the same problem has been solved using the
averaging method [11] where the analytical expressions for the elastic
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FIGURE 5 Laminated composite material.

properties have been obtained. The main result of this section is as fol-
lows: the analytical solution presented in Khorshun et al. [11] is the
solution of our system of differential equations deduced using the
modified Bruggerman’s method. That is, both methods give identical
results in the case of laminated composite materials.

Let the axes of symmetry be directed perpendicular to the layers of
the laminated composite material. The equations of equilibrium are
considerably simplified in this case. Derivatives of both the stress
tensor and the fluctuation of displacements u; — Z?:1<3ij>xj vanish in
any direction tangential to the layers, where # is the displacement
and (¢;;) are averaged deformations (i, j = 1,2, 3). This gives the possi-
bility to solve the equations of equilibrium and to calculate the stress
tensors, deformations, and effective elastic moduli [11].

Let ™ be the elastic moduli of the matrix, A, A2, ... AM be the elas-
tic moduli of layers of type 1,2,...,M and y!,9%,...,9" be the volume
fractions of layers of type 1,2,..., M.

An averaged value of an arbitrary function, g, over big volume, V, is
introduced as (g) = ¢ [,gdv. Let g(x) be equal to g™ inside the matrix
and g',g2,...,g" inside corresponding to layers of type 1,2,..., M. All
values g”,g', g2, ...,8M remain constant inside the matrix/layers. The
averaging procedure results in (g) = g™ (1 -y yi) + M gy,

Deformations, ¢, and stresses, ¢, inside any layer of the type
glg=1,2,...,M) and matrix are related according to ¢ = h% and
o = h™e, respectively. Averaged deformations, (¢), and stresses, (o),
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are related according to the same law [11]: (¢) = A7 (¢). The latter
relations allow the presentation of the solution in the following form:
hefft = h(h™ hY h% ... BM 91 92 .. M) [11]. These expressions in the
case of laminated composite materials with orthotropic layers and
common axes of isotropy, one of which is perpendicular to the layers,
have been obtained in Khorshun et al. [11] as follows:

hflaas = (hasss) + (huss/huinn)®/(1/kann) — (haiss® /hain)
hgfgm = (hagas) + (h1192/h1111)%/(1/h1111) — (R1129° /h1111)
hff 1 =1/(1/hun)
hiflas = (hasss) + (h11ss/h1111) (k1122 /ha111) /(1 /hann)
— (h11sshi122/h1111) (16)
RSy = (hiiss/hun)/(1/h1in)
Wl = (hasss)
hf1y = 1/(1/h1s12)

helfgm = 1/<1/h1313>~

The derivatives Asi®8le% gre defined below as follows:
Asingle,k (hm , hk)

_On(h™ YR, R 6y 692, oM

B 65«/’3 (5~/1:($7;2:...:§1/M:0

(k=1,2,... M).
(17)

Now let the functions As#le*(h™ h*) be calculated according to
Equations (16) and (17) and substituted into the system of Equations
(14). After tiresome calculations (not presented) it is possible to show
that Equations (16) being substituted into the system of Equations
(14) give their exact solution. This means that the averaging method
[11] and the modified Bruggerman’s method give identical results in
the case of laminated composite materials.

5 CALCULATION OF THE EFFECTIVE ELASTIC MODULI
OF COMPOSITE MATERIAL WITH SPHERICAL INCLUSIONS

The system of the differential Equations (14) is applied below for cal-
culations of the effective elastic moduli of the elastic isotropic com-
posite materials with spherical isotropic particles (inclusions) and
isotropic matrices. Earlier these moduli have been calculated using
the cell method and Bruggerman’s method in the case of inclusions
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of only one type [3]. However, the equations have been presented in
Christensen [3] without any derivation. It does not allow one either
to estimate the correctness of the obtained results or develop further
generalization in more complex cases of inclusions of different types.
Below the modified Bruggerman’s method is applied to calculation of
the elastic properties of the composite materials with several different
types of inclusions using Equations (14).
Hooke’s law for the particles and the matrix reads

3 3
gjj = kP (Z F,m> 5ij + 2,up8,-j, gjj = k™ <Z F,m> 5,']' + Z,umsij,
n=1 n=1

where kP, 1, k™, and y™ are elastic coefficients of the particles and the
matrix, respectively. The same law gives the relation between stress,
o, and deformation, ¢, averaged over the volume:

3

(oy) = kT (Z(%)) 5y + 21 (). (18)

n=1

The Young’s modulus, E, and the Poisson’s ratio, v, are usually used
instead of the coefficients x and u:
Ok u 3k —2u

E:3k+u’v:2(3k+u)' (19)

If the volume fraction of inclusions is small, 0y << 1,then co-
efficients £/ and p* have been obtained using the cell method in
Christensen [3]:

P = ™+ AR (" R 1P RP ) Sy,

20
R = k™ + AT (W R 1P RP )0y, .
where
15(1 —v™) (“:L - 1)//"
AH(,Umakma,upvkp) = £ 'up7
7—5vm +2(4 — 5"'")#_,,1
'Y
(}’:_m _ 1)km
AR BT 1P RP) = (21)

QLT
bm +%Mm
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where
3k 2™
© 2(3km 4 )’

vm

The system of Equations (14) in the case under consideration using
Equations (20) and (21) results in the following system of differential
equations:

B
ey (B fF
aer 0T )(ueff 1)“8

dy

)

B
7 — 5velf +2(4 — 5velf ,u) 1-y
( 4-sem ) 1-y

kP ff
drefl (ke_ff a 1>ke
d')) o B _ peff
i L (1-9)
Reff & pieff

; (22)

3kt — 2peff
2(3keff + peffy’
subjected the following obvious boundary conditions:

where v/ = The system of Equations (22) should be

'ueff|y:0 — 'um7 keff‘yzo = k™, (23)

Solution of the system of differential Equations (22) with the
boundary conditions in Equation (23) allows determination of the
dependency of the effective elastic coefficients of the composite
material on the volume fraction of inclusions. The system of differen-
tial Equations (22) was presented in Christensen [3] without a proper
derivation. The derivation given above allows generalization in the
case of composite materials with inclusions of several different types
(according to Equations (14)).

In Figures 6 and 7 the comparison of the available experimental
measurements from Simeonov and Ahmad [12] with the calculations
according to Equations [19] and [22] (curves 1) and according to the
Mori-Tanaka theory [13] (curves 2) is presented for the dependency
of the Young’s modulus of the composite materials on the volume frac-
tion of inclusions.

The sum of squares deviations is taken for an estimation of the
deviation from the experimental data:

N
e e 2
1= Z [Eifop - Eiﬁalc] ) (24)
i=1
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FIGURE 6 The Young modulus, E¢7, of cement. Experimental data from
Simeonov and Ahmad [12]: 1, according to Equations (22) and (19),
7=23.948; 2, according to the Mori-Tanaka theory [13], y=27.724. Matrix:
cement past E™ =12 GPa, v™ =0.22. Particles: sand EP =80 GPa, v? =0.21.

where N is the number of data points (N = 5 in Figure 6 and N = 3 in
Figure 7) and E‘;’pr (i=1,...,N) are the experimental values of
Young’s modulus [12]. Figures 6 and 7 show that the calculations
according to Equations (19) and (22) result in better agreement with
the experimental data, than do calculations based on the Mori-Tanaka
theory.

In Table 1 comparison of the experimental data on the elastic
properties of the concrete with two types of inclusions from Simeonov
and Ahmad [12] are compared with our predictions calculated accord-
ing to Equations (14) and (19). Comparison shows that the predictions
according to our theory in all cases overestimate the experimental
values. Calculations according to Mori-Tanaka theory in all cases
underestimate the same experimental data.

6 VISCOSITY OF CONCENTRATED SUSPENSIONS:
INFLUENCE OF CLUSTER FORMATION

In Starov et al. [4], cluster formation in concentrated suspensions
has been taken into account, and based on this consideration a new
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FIGRUE 7 The Young modulus, E7, of cement. Experimental data from
Simeonov and Ahmad [12]: 1, according to Equations (22) and (19),
7=382.577; 2, according to Mori-Tanaka theory [13], y=131.782. Matrix:
cement E™ =12 GPa, v =0.22. Particles: steel EP =207 GPa, v?»=0.3.

equation of the dependency of the effective viscosity on the volume
fraction of particles, y, has been deduced:

< 7 _ Y
d_’/] = 2 517 d <A?max) + A?r:ax d <7max) (25)
dy ' dy R dy ’
Vmax
e 2021 Ay Zzoi1 Yimax?i .
where A = =2==—" ) === 7 and y; 1=1,2,3,...
Zi:l 7 Ymax Zi:l 7 Vi Vi max ( )

are volume fraction of clusters and averaged packing densities of
single particles inside clusters, respectively; 7;m,.x=1; and
A; 1=1,2,3,...) are deviations of the friction coefficient of clusters
with i( = 1,2,3,...) particles from the corresponding value for solid
particles (A; = 1).

It is important to notice that A and 7,,,, are functions of both the
volume fraction, y, and the applied shear stress, 7. The latter means
that it is not necessary to deduce a separate equation for dependency
of viscosity on the applied shear stress/rate: it is enough to develop a
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model that gives dependency of both A and 7,,,, on the applied shear
stress/rate.

Let us assume that A is independent of the volume fraction, y. In
this case the latter equation takes the following form:

a6 | a6
_’7 — 25712 ’max + Ymax Ymax

dy dy 1-_ dy

Vmax

or

Y
dn  257A d(?max>
dy 1__7  dy

Vmax

(26)

with the boundary condition
n(0) =n™. (27)

It is important to emphasise that 7,,,, is not supposed to retain a
constant value, independent of the volume fraction, y.

The solution of Equation (26) with the boundary condition in Equa-
tion (27) is

o L\ 254
(- 5on)
ymax

Equation (28) almost coincides with the Dougherty-Krieger equation
[14, 15]:

) bt (28)

nw) _ 1 (29)

o (17 mas *
©(k)
Vmax

where [7] is an intrinsic viscosity.

It is necessary to emphasise that in spite of a striking similarity
between Equations (28) and (29) there are two very substantial differ-
ences between these equations:

1. The physical meaning of parameters included in Equation (28) is
quite different from those used in Equation (29). According to the
theory developed above, viscosity dependence on concentration is
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related to cluster formation and this physical phenomenon is incor-
porated in Equation (28).

2. Equation (28) describes both dependency on particle volume
fraction and on the applied shear stress/rate. This dependency is
hidden in the dependency of both A and 7,,,, on the applied shear
stress/rate.

If particles do not form clusters, thatis, y; = y; 7, =0, 1 =2,3,4,..,
and hence 7,,,, = A = 1 should be used in Equation (28), which gives in
this particular case

) 1
n() (30)

no  (1—yp)*°

The latter equation coincides with the earlier obtained expressions
for the dependence of the effective viscosity of suspensions that do not
form clusters [16, 17].

A comprehensive review of experimental data on viscosity of con-
centrated suspensions is presented in Thomas [18]. In Starov and
Zhdanov [6], the comparison of experimental data with predictions
according to Equations (30) and (28) has been presented. The com-
parison showed that the whole array of experimental data can be
described using Equation (28) at difference but reasonable para-
meters 7., and A. It has been shown in Starov and Zhdanov [6]
that prediction according to Equation (30)—no cluster formation,
particles evenly distributed in space—underestimates experimental
data.

Let us make the next simplification and assume that both A and
Tmax are independent of the particle volume fraction, y; that is, both
depend only on the applied shear stress, .

Experimental data on the rheology of a synthetic latex (shear stress
dependence in a wide range of concentration) presented in Maron and
Fok [19] are used below.

Two experimental values of the effective viscosity of suspensions at
particle volume fractions y = 0.299 and y = 0.6017 (the lowest and the
highest available, respectively) at each shear stress, t from Table 2 are
used to calculate two unknown values, A and 7,,,,, for each value of the
shear stress, 7. This procedure results in the system of two equations
with two unknown values, 7,,.,(t) and A(z). In this way, at each shear
stress, 7, these two values were determined. Determined dependences
A(t) and 7, () are presented in Figures 8 and 9, respectively. Figure 9
shows that the average packing density inside clusters, 7,.¢(7),
increases with applied shear stress, that is, clusters become denser.



(. ‘sooryaed
JO UOI}ORI) SWN]OA JO SONTEA JUDISJIP J€ (,WD/SIUAD) ‘1 ‘SSAIYS JBIYS d)} JO UOKPUNY € S 1/ 1l [61] YOGET Sem Jojowerp s[oryred ageiosy

€601 T10'89 08'7¢€ 8616 99'TT L6G’L - - 008 =1

G'1ET 8¢'6L gr'6¢ 1676 €021 06L°L L09°G 01T'€ 00§ =1

6'9LT 8G°96 6€°G¥ 96°L¢ 0L°¢T ¢80'8 689G GET'E 00€ =1

8'Iv¢ 12231 0229 ge'1e 14498 €9€'8 ¢08°G LST'E 00g =1

079 8L'80% 8T'TIL c0°0% LT°ST €668 1809 81c'¢ 00T =1

€680T 0T'v0¥ L0°L0T 0¢'2S 8T'LT 6,86 vev'9 €62°¢ 0g=1
L1090 = ¢ 998670 = ¢ €09G°0 = ¢ 06850 = ¢ 9.8%0 =4 86€¥°0 = ¢ L6g0="=" 6620 =

suolsuadsng Xojer] auad)s-ousipeing Jo A}IS0ISIA 9ATI0RJJH 9y} Jo dduspuado( Tejuswiiodxy g A IAV.L

1102 Alenuer gz 95 :80

v pspeo jumog

989



08:56 22 January 2011

Downl oaded At:

990

0735

0,720

07zs

o.7zo

0718

o710

V. M. Starov et al.

u]

T 1 T T 1
100 200 200 400 S00 T

FIGURE 8 Dependence of average parameter, A, on applied shear stress, 7.

¥ e

0,650

0645

0640

0,633

0,630

0,625

0,620

0E1%

010

T T T T T T T T T T 3
i00 200 aoo oo =00 T

FIGURE 9 Dependence of average packing density inside clusters, y,,,x, On
applied shear stress, 1.



08:56 22 January 2011

Downl oaded At:

Effective Properties of Porous and Composite Materials 991

In this situation the average friction coefficient, A, should increase,
which is in agreement with Figure 8.
Equation (28) can be rewritten as

N _ 1 (31)

o v 25A(1)
()
Vmax(f)

The above determined 7,,.,(t) and A(r) dependences are used for cal-
culation of 5(y,t) at all shear stress, 7, all volume fractions, y. Calcu-
lated dependencies of effective viscosity on the volume fraction
according to Equation (31) are compared with the corresponding
experimental values of effective viscosity at different volume fractions,
y, taken from the set of values {0.397, 0.4398, 0.4876,
0.5390, 0.5603, 0.5866} (Table 2). Comparison is presented in Figure
10, which shows that the assumed independently of 7,,..(r) and A(z)
from the volume fraction of particles is reasonably fulfilled.

a =029
= 7= 0397
® 7= 04398
Y = 04876
1000 - a w 7 = 05390
' E \ Y = 05603
ﬂ”ﬂ ] . o a4 y = 0586
] ~— @ v = 06017
ﬂm T - Ta—
TT—a—
"-—r--..,,______:ﬁ.”” \\A
: e e [
- T e L
SN -
- —— e - _ _ _ .
-
10 o - -—————— . - .................
@ 1 [ 3 > >
T T T T T T T T i I
0 100 200 300 400 500

FIGURE 10 Dependency of the effective viscosity of suspensions on shear
stress calculated according to Equation (31) at different particle volume frac-
tions. Experimental data from Manon and Fok [19]. A(7) and },,,,(t) dependen-
cies from Figures 8 and 9, both assumed independent of the volume fraction of
particles.
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APPENDIX A1: CALCULATION OF THE EFFECTIVE DIFFUSION
COEFFICIENT USING THE CELL METHOD

Let us consider a porous medium built up by the spherical imper-
meable particles (Figure 2) with a liquid or a gas in between. The
effective coefficient of the molecular diffusion in this porous medium
is calculated below using the cell model. The unit cell of radius R is
presented in Figure 3. It includes an impermeable spherical particle
of radius a in the centre and the dispersion medium around. The cell
is surrounded by the effective medium with unknown effective dif-
fusion coefficient, D*'. The radius of the cell, R, is given using the fol-
lowing condition y =4 a?/4R? = (%)S,R =a/yY/3, where ¢ =1—y is
the porosity and 7y is the volume fraction of the particles.

Molecular diffusion of some admixture take place in the space
between particles, which are impermeable for this admixture. Far
from the cell the gradient of concentration of the admixture is constant
(see the condition in Equation (A1.7)). On the boundary of the cell the
concentration and the flux of the admixture are continuous. On the
boundary of the particle the flow in the direction perpendicular to
the boundary of the particle us zero (impermeability condition). The
concentration outside and inside of the cell obeys the Laplace equa-
tion:

ACF =0, r>R, (A1.1)
AC" =0, r>R. (Al1.2)
The boundary condition on the boundary of the particle of radius

a is

.7 C™

= 0. (A1.3)

r=a

The boundary conditions on the boundary of the cell of radius R are

— cf
r=R

cm (A1.4)

r=R

and

D" Vi cm _ Deff Vi Ceff

r=R

(A15)

r=R

where D™ is the diffusion coefficient in the dispersion medium-and
D is the effective diffusion coefficient to be determined.
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The solution of Equation (Al.1) can be presented in the following
form:

C" = g(r)cos0,r > R. (A1.6)

Far from the cell the constant gradient of the admixture concen-
tration is imposed:

Cf = C>r cos 0, (A1.7)

where C™ is the constant describing the concentration field far from
the cell. The cell under consideration is a part of the porous medium
and hence does not disturb the concentration field outside the cell.
The latter remark and comparison of Equation (A1.6) and (A1.7) shows
that g(r) = C>.

The solution of Equation (A1.2) can be presented in the same form
as Equation (A1.6):

C" =f(r)cosl, r<R,

Substitution of the latter expression in Equation (A1.2) gives
m __ Q
C" =|Gr+ o Jcos 0. (A1.8)

where G and @ are integration constants. The unknown effective
diffusion coefficient, D7, can be calculated using the three boundary
conditions in Equations (A1.3)—(Al.5). Indeed, the concentration
profiles outside and inside the cell, Equations (Al1.8) and (A1l.7),
include two integration constants, G and @ as well as the unknown
effective diffusion coefficient, D/, That is, we have system of three
equations with three unknowns. This system has the following
solution:

C>a?
Q=5 e (A1.9)
G = 22%/ (A1.10)
D = (1%)Dm. (A1.11)

Equation (A1.11) has been deduced by Maxwell [9] in a different way.
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APPENDIX A2: CALCULATION OF THE DIFFUSION
COEFFICIENT USING THE MODIFIED BRUGGERMAN'’S
METHOD

The volume fraction of particles is defined as
VP
Y= 77
where V is the total volume of the porous medium and V7 is the total
volume of particles.

The unknown dependency of the effective diffusion coefficient on
the fraction of the particle is

DT = D(D™, ), (A2.2)

(A2.1)

which is calculated below.
In the case y = 0, Equation (A2.2) is reduced to

D™ = D(D™,0). (A2.3)

If the fraction of the particles is small, dy << 1, the Equations (A2.2)
and (A2.3) result in

Deff =D" 4 Adiffusion (Dm)(s% (A24)

where Adiffusion js the new function that which is determined earlier
according to Equation (3).

Let us randomly mark some small number of particles, and remain-
ing particles are left unmarked. The volume fraction of marked parti-
cles, 00, is

oV
00 = — A2.5
= (A2.5)
where 0V is the volume of marked particles. The volume fraction of the
nonmarked particles, y — dy is

VP — 6V

Equations (A2.1), (A2.5), and (A2.6) result in the following relation:

o0
or, keeping only first-order small terms,
o
00 =2 (A2.8)
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The porous structure can now be considered as a mixture of marked
particles surrounded by the rest of the porous structure built up by
unmarked particles (Figure 1b). Thus, the effective diffusion coef-
ficient can be expressed in two different ways: (1) using the definition
in Equation (A2.2) and (2) using “marked particles” with volume frac-
tion 60, surrounded by an effective medium of “unmarked particles”
with volume fraction y—Jy. The unknown diffusion coefficient in the
effective medium built up by “unmarked particles” according to the
definition in Equation (A2.2), is D(D™,y — dy). As the effective dif-
fusion coefficient does not depend on how it is calculated, it yields
the following equation:

D(D™,y) =D(D(D™,y — dy),00). (A2.9)

Using Taylor’s series and saving terms of the first-order pro-
portional to §y and 60, the latter equation gives

OD(D(D™,y — dv), 66
DOW" 7 - ).50) ~DDD".),0)+ LTI =000 5,
0=0
950 . 059. (A2.10)

30=0

Equation (A2.10) can be simplified using the condition in Equation
(A2.3):

D(D([D™,y),0) = D(D™,y). (A2.11)

The combinations of Equations (A2.3) and (A2.2) results in

oD(DD™,y —97),80) | _ OD(D(D™,y),0)
900 -0 900 56=0
_ DD y)
L
= A%ilfusion (Defl), (A2.12)

The condition in Equation (A2.3) gives

00y

=0 9oy =0

(A2.13)
oD (D™ ) dDeff

oD(D™,y — &y)
0oy

57=0 Iy dy




08:56 22 January 2011

Downl oaded At:

996 V. M. Starov et al.

Substitution of Equations (A2.11)—(A2.13) into Equation (A2.10) gives

o Deff
0— Adszuswn (Deff)ég _ dd—y 53;. (A2.14)

Substitution of Equations (A2.4) and (A2.8) into Equation (A2.14)
results in the following differential equation:

d Deff B Adiffusion ( Deff )

A2.1
. i (A2.15)
with the boundary condition in Equation (A2.3):
D| _, =D™. (A2.16)

APPENDIX A3: THE SYSTEM OF PARTIAL DIFFERENTIAL
EQUATIONS FOR THE CALCULATION OF THE ELASTIC
PROPERTIES OF THE COMPOSITE MATERIALS CONTAINING
DIFFERENT TYPES OF INCLUSIONS

The differential equation for dependency of the effective elastic proper-
ties of the composite materials on volume fractions of several different
types of inclusions is deduced below using the above-described
modified Bruggerman’s method.

The volume fraction of inclusions of type k, %, is defined
as follows:

(A3.1)

here V is the volume of the composite material and V* is the volume of
inclusions of type & (k =1,2,...,M).

Let 27 be the effective elastic coefficient of the composite material
h™ the elastic coefficient of the matrix and ~* the elastic coefficient of
the inclusions of type k(k = 1,2,...,M). The coefficients ", h™, and
K" can be tensors, vector, or scalars (for example, both Young’s modu-
lus and Poisson’s ratio) depending on the problem under consider-
ation. It is assumed below that the following relation describes the
effective elastic coefficients:

R = hylhm B2 R gt R M) j=1.2,... N (A32)

Below the index j is dropped as an abbreviation.
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In the case y! =92 =... =9 = 0 (no inclusion), Equation (A3.2)
results in

h™ =hp™ R A2 .. RM0,0,...,0]. (A3.3)

which is used below as the boundary condition. In the case
7#=03GE=1,2,....,k—1,k+1,....M) (only inclusions of type &),
Equation (A3.2) results in

hSingle'k[hm,hk,'yk] = h[hmyhlahza s 7hMa Oa 07 EER) 07 yk70’ s 70] (A34)
Dependence As8le:# (k. = 1,2, ... M) are defined as

ahsingle [hm7 hk , &/k}
05))’3 (;yk:()

Asingle,k(hm’hk) _ ’(k — ]_,2,,,,,1\/_[). (A35)

Let us randomly mark a small number of inclusions of each type.
The small volume fractions of the marked inclusions,
50k(k =1,2,...,M), are equal to
vt

V b
where 6V* is the volume of marked inclusions. The volume fraction of
the unmarked inclusions are

o0 = (A3.6)

E_ syk
W — ok = V-V (A3.7)

T
V- oVi

i=1
Equations (A3.1), (A3.6) and (A3.7) result in

M .
(59k —ES 591)
i=1

o —
oyt = i , (A3.8)
1-5 60
i=1
or, neglecting the small volume fractions of higher order,
M .
S =008 — Y o0 (A3.9)
i=1

The composite material can be treated now as a mixture of marked
inclusions surrounded by an effective medium with unmarked inclu-
sions. Thus, the effective elastic coefficients of the composite material,
R can be expressed in two different ways: (1) according to the
definition in Equation (A3.2), and (2) using “marked” inclusions (with
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the volume fractions 5¢*, £ = 1,2, ..., M) surrounded by the effective
medium with “unmarked” inclusions (with the volume fractions given
by Equation (A3.9)). The latter effective medium has the elastic pro-
perty h[h™ A A% ... BM y1 — 5yl 2 . M — 5yM] according to the
definition in Equation (A3.2).

The coefficients calculated in these two ways should be equal. This
results in the following system of equations:

h[hm,hl,hZ,...,hM,yl,yZ,...,yM]
= h[h[h™ WY B2, M o — 5yt 2 — 5yt M —yM], (A3.10)
Y R%, . RM 501,602, ... 60M),

The system of Equations (A3.10) is transformed below using the
Taylor series with small parameters 6y and §0:

h[h[hm,h:l,hQ,...,hM,y1 — 5y1,y2 — 5y2,...,yM —5yM],
R B2 RM 50,602, .. 60M)
=h[r[h™ A A2 M L 2 M) R B2, RM 0,0, .., 0]
M m 1 72,2 M 1 1.2 2 M S~ M
Oh[R[R™ hY b2 .. RM bt — 5yl 92 — §5y2 M — 5yM),
=S A Y A ¥ 7]

— do0"
152 M spl sp2 N
Xh,h,...,h ,59k,59,...,aeM] 5ot
000 s
M m pl p2 M 1 1.2 2 M M
Oh[hIR™ h* h= ... Y oyt — oyt y% — 0y%, ..y — oy,
'y (Al Vaéqkw 7 =0y Y 7]
k=1 v
R R2, . RM 501,607, 60 .
) ) ) Y Y I k) . A 11
X 9677 ()itg(%) (A3.11)
In the latter equation, and below, the following abbreviation, gf{’,zg,

stands for
80t = =00 =0
l=..=M=0"
Equation (A3.11) can be simplified using the relations in Equations
(A3.3) and (A3.2):
™ RY B2 RM 2 M R A2 RM0,0,. .., 0]
=hp™ Ry R2 L RM R M) = bl (A3.12)
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The combination of Equations (A3.3)—(A3.5) results in
ah[h[hm7h17h27 s 7hM7V1 B (SV17}Y2 B 6’}127 s 7"/‘M — (SVML
Oyk
y L R2 . RM 50,607, ..., 60
60"

5=0

_ ORh[R[R RN B2, RM oyt 2 MY R R, RM 801, 507, .. 00M]
B as0"

50=0
7ahSingle[h[hm7h17h27"'7hM7y17y27"'7VM]7h17h27'"7hM769115027"'756M]
50" 560" =0
:Asingle,k(heff7hk)_
(A3.13)
Equations (A3.4) and (A3.2) give
Ohlh[A™ hY hZ ... hM ot — 5yl 02 — 592, . M — 5yM]
Ok
y R B2 .. hM 501662, . .., 60M)
0oy* -0
_ah[h[hm7h17h27 s 7hM7y1 B 5’))17'))2 B 5V27 s 7'))M — 5'))M]7
N Ok
Xhl,h2,...,hM,0,0,...,0]
Qoy* or=0
_ 8h[hm,h1,h2, . ,hM,yl - 53)1,))2 — 52 ,yM — (3yM]
a doyk or=0
_ 6h[h’",h1,h2, . ,hM,yl,yz, . ,yM] _ Ohelt
N 06k oy
(A3.14)

Now Equation (A3.11) can be simplified using Equations (A3.12)—
(A3.14) as follows:

Y single,k (zeff 1,k 3 A aheff k
OZ;A k(neff h#) o0 —kzla—ykay (A3.15)

The “marked” inclusions are selected randomly, therefore the small
volume fractions, 60°(i =1,2,...,M), are independent. Therefore,
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Equation (A3.9) after substitution in Equation (A3.15) and collecting
terms proportional to d6* results in

eff M eff .
Oh M i k—12.. M (A3.16)

_ Asingle.,k eff pky _ :
0 (W) =5 +i:1 5

Multiplying Equations (A3.16) by 7* and summation over % yields

—7" ST
= o 1=

Substitution of Equation (A3.17) into Equation (A3.16) results in the
following system of differential equations:

M oheff . _ Z?ilAsingle,i(heff7hi)yi

(A3.17)

OReft

N Zi‘il Asingle‘i (heﬁ”7 hi),yi
Ok

:Asingleﬁk (heff,hk) :
1- 2?11 v

M.

Ck=1,2,...

)

(A3.18)

The effective elastic coefficients of the composite material, %7, can be
calculated as solutions of the system of nonlinear partial differential
Equations (A3.18) with the boundary conditions deduced from the con-
dition in Equation (A3.3)

heft =h". (A3.19)

Pl=y2m =yl =0

NOMENCLATURE

radius of particles (droplets)
concentration

diffusion coefficient

Young’s modulus

elastic moduli of composite material
integrating constants

radius of cell

displacement

volume

<swmoTEUAQ-e
@

Greek Symbols

€ dielectric permeability or deformation

n viscosity

y volume fraction of particles/droplets

¢ porosity

u elastic shear modulus of composite material
v determined in Equation (19)
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b4 squares deviation

0 fraction

Superscripts

eff effective

diffusion diffusion

single characteristics of a material with only one type of inclusion
m matrix (medium)

p particles (droplets)
Subscripts

max packing density inside clusters
exp experimental

calc calculated
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